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Abstract

Monarch butterflies are a species of conservation priority due to declining

overwintering populations in both eastern and western North America.

Declines in western overwintering monarchs—more than 99.9% since monitor-

ing began—are especially acute. However, the degree to which western

monarchs are a distinct biological entity is uncertain. In this review, we focus

on phenotypic and genetic differentiation between eastern and western

monarchs, with the goal of informing researchers and policy-makers who are

interested in monarch conservation. Eastern and western monarchs occupy

distinct environments and show some evidence for phenotypic differentiation,

particularly for migration-associated traits, though population genetic and

genomic studies suggest that they are indistinguishable from one another. We

suggest future studies that could improve our understanding of differences

between eastern and western monarchs. We also discuss the concept of adap-

tive capacity in eastern and western monarchs as well as non-migratory

populations outside of the monarch's primary North American range. Finally,

we discuss the prospect of completely losing migratory monarchs from western

North America and what this entails for monarch conservation.
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1 | INTRODUCTION

The North American monarch butterfly (Danaus
plexippus plexippus [L.]) is an iconic species known for
its distinctive coloration, association with milkweed
host plants, and continent-scale seasonal migration
(Gustafsson, Agrawal, Lewenstein, & Wolf, 2015). Over
the past two decades, monarchs have become the focus
of intense conservation attention, including a recent
decision by the United States Fish and Wildlife Service

(USFWS) that a threatened listing under the
U.S. Endangered Species Act (ESA) is “warranted but
precluded” (USFWS, 2021: Monarch Butterfly). Under
the ESA, specific populations of vertebrates are eligible
for separate listings, as is the case for populations of
grizzly bears (USFWS ECOS, 2020a: Grizzly Bear), gray
wolves (USFWS ECOS, 2020b: Gray Wolf), and particu-
lar salmon runs (USFWS ECOS, 2020c: Chinook
Salmon). For invertebrates, however, listing decisions
must be made on a species- or subspecies-level basis

FIGURE 1 (A) Distribution of summer-breeding monarch butterflies in the United States and Canada. Points correspond to all records

from GBIF (n = 20,552) in July and August and are separated into eastern (yellow), western (orange), and year-round breeding (white)

locations. Map generated using ggmap (Kahle and Wickham 2013) and the Google Maps API. (B) Comparison of overwintering numbers for

eastern and western monarchs between 1993-2020. Overwintering abundances are weakly positively correlated (also see Appendix 1). Note that

axes are on very different scales. (C) Overwintering abundance for eastern monarchs from Mexico, based on data from WWF Mexico.

Abundance is based on aerial estimates of forest area occupied. The trend line shows polynomial-smoothed change through time and 95%

confidence intervals around this trend. Note that overwintering abundance estimates are also available for some years between 1976-1994 but

are not shown here. Overwintering eastern monarch densities are likely between 21-28 million butterflies/hectare (Thogmartin et al. 2017). (D)

Overwintering abundance for western monarchs from sites in California. Abundance estimates from 1981-2016 take into account sampling

effort and are the same as the values presented in Schultz et al. (2017); abundance estimates for 2017-2020 are based on non-adjusted counts

2 of 13 FREEDMAN ET AL.



(National Research Council, 1995; Western Association
of Fish and Wildlife Agencies, 2019).

In the case of monarch butterflies, species-level conser-
vation decisions require weighing evidence from two geo-
graphically and demographically distinct regions that
comprise the core of the species' geographical distribution:
eastern North America and western North America
(Figure 1a). In addition, monarchs are established as year-
round breeding populations in areas around the world,
including many outlying U.S. states and territories
(Ackery & Vane-Wright, 1984). This manuscript discusses
whether monarch populations outside of eastern North
America provide adaptive capacity—broadly defined as
the ability to respond to future environmental change—
for the species a whole. Here, we focus on adaptive capac-
ity in an evolutionary rather than a demographic sense, as
we consider it self-evident that the presence of monarch
populations outside of eastern North America provides
redundancy and reduces the risk of stochastic extinction
(e.g., from extreme weather events affecting eastern over-
wintering locations) (Nail, Drizd, & Voorhies, 2019).

Historically, eastern and western monarchs have been
regarded as distinct populations (Urquhart, 1960). East-
ern monarchs overwinter in the Transverse Neovolcanic
Range of central Mexico and have a summertime breed-
ing range that covers much of the United States and
southern Canada east of the Rocky Mountains. Western
monarchs overwinter at hundreds of sites along a stretch
of coastline in California and Baja California and have a
summertime breeding range that includes parts of Cali-
fornia and the interior west. Western monarchs occupy a
large geographic area—approximately 30% of the
monarch's overall North American range (Figure 1a)—
but comprise a relatively small proportion of the
monarch's North American population. Counts of eastern
overwintering monarchs have historically been two to
three orders of magnitude larger than those for western
overwintering monarchs (Figure 1).

Although most conservation attention to date has
focused on the larger eastern monarch population, the
recent decline of western overwintering populations has
been precipitous (Crone, Pelton, Brown, Thomas, &
Schultz, 2019; Pelton, Schultz, Jepsen, Black, & Crone,
2019; Schultz, Brown, Pelton, & Crone, 2017). Declines in
western overwintering monarchs have been mirrored by
low summer breeding numbers (Espeset et al., 2016), cul-
minating in a >99% reduction in counts of western over-
wintering monarchs since monitoring began. For three
consecutive years, western monarch overwintering num-
bers have been below their quasi-extinction threshold,
raising concerns about their long-term persistence
(Pelton et al., 2019; Xerces Society, 2021; Figure 1d).

How, if at all, should the decline of western monarchs be
incorporated into a species-level conservation approach?
The answer to this question depends partly on the degree
to which eastern and western monarchs constitute eco-
logically and evolutionary distinct entities. Specifically, if
western monarchs are distinct and have the potential to
contribute non-redundant adaptive genetic variation to
the species, then their decline should be weighed more
heavily in a species-level listing decision.

In this review, we evaluate the current state of knowl-
edge regarding ecological, phenotypic, and genetic differ-
entiation between eastern and western North American
monarchs. In each section, we suggest future experiments
and analyses that could be done to address current gaps
in knowledge. We then discuss adaptive capacity in east-
ern and western monarchs as well as non-migratory mon-
arch populations outside of North America.

2 | ECOLOGICAL AND
PHENOTYPIC DIVERGENCE
BETWEEN EASTERN AND
WESTERN MONARCHS

Eastern and western North American monarchs are geo-
graphically separated by the Rocky Mountains and
occupy distinct biotic and abiotic environments. These
different environments have the potential to exert diver-
gent selection pressures and drive phenotypic differentia-
tion. Studies have used measurements from both
wild-caught and common garden reared monarchs to test
for phenotypic differentiation between eastern and west-
ern monarchs. We focus on four primary ecological
factors—though there may be others—that are strong
candidates to drive phenotypic differentiation between
eastern and western monarchs: host plant associations,
thermal environments, interactions with natural ene-
mies, and migratory behavior.

2.1 | Host plant associations

Monarchs encounter more than 100 native species of
milkweed (Apocynaceae: Asclepiadoideae) host plants
throughout their North American range (Woodson,
1954) and have been documented using more than 40 of
these species as larval hosts (Borders & Lee-Mäders,
2018; Malcolm & Brower, 1986). Eastern and western
milkweed assemblages differ greatly: the eastern species
perceived to be of greatest importance to monarchs
(Asclepias syriaca, A. viridis, A. incarnata) are confined
entirely to east of the Rocky Mountains, and the primary
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western hosts (A. speciosa, A. fascicularis) are either
partly or entirely restricted to the west. This divergence
in larval host plant assemblages has the potential to con-
tribute to adaptive differentiation in eastern and western
monarchs. Two studies to date have tested for patterns
of local adaptation to host plant assemblages, both using
common garden experiments (Table S1). Neither study
found strong evidence for local adaptation to host plant
assemblages, as measured by host plant by population
interactions (Ladner & Altizer, 2005) or sympatric/allo-
patric contrasts (Freedman, Jason, Ramírez, & Strauss,
2020). While future studies comparing eastern and west-
ern host plants are unlikely to uncover a signature of
local adaptation and are not a high research priority,
obtaining a better understanding of how monarchs uti-
lize early-season milkweeds in western North America
(especially A. cordifolia, but also A. californica, A. erosa,
and A. vestita) would be beneficial.

2.2 | Thermal regimes

Eastern and western monarchs occupy generally distinct
thermal regimes. Summer-breeding monarchs in western

North America are typically found in areas with a broader
range of daytime high temperatures, despite having a more
compact geographic range (Figure 2a; see Data S1). West-
ern monarchs also occur in areas with limited summer pre-
cipitation (Figure 2b), which may determine milkweed
availability and explain why western monarch occurrence
records are biased toward areas with surface water (Dingle,
Zalucki, Rochester, & Armijo-Prewitt, 2005) and particular
land cover patterns (Dilts et al., 2019). This pattern applies
to both adult and larval monarch records (Data S1). We
also note that western monarchs (including immature
stages) are frequently found in areas considered outside of
the climatic envelope predicted in mechanistic models of
larval development (Zalucki, Brower, Malcolm, & Slager,
2015; Zalucki & Rochester, 1999).

Only one study to date has directly compared eastern
and western monarchs with respect to rearing tempera-
ture (Davis, Farrey, & Altizer, 2005). This study com-
pared eastern and western monarchs under a range of
temperature treatments and found that western monarch
larvae were lighter in coloration than eastern larvae
regardless of temperature treatment, with this result
interpreted as evidence for adaptive variation: lighter
cuticular color should be favorable for living in high
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FIGURE 2 (Left) Distribution of daily high temperatures during the peak of the monarch’s summer breeding season (July and August) in

eastern and western North America, corresponding to the occurrence records shown in Figure 1A. Western monarchs were recorded in locations

that had median summertime maximum temperatures that were 2.3�C warmer than comparable eastern locations. Results are qualitatively similar

when using only records from immature monarchs (eggs, larvae, pupae) generated from iNaturalist using the iNatTools package (Hanly 2019).

(Right) Summer records of monarchs in western North America come from areas that receive little summer precipitation. For details, see Appendix 1
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summer temperatures (Davis et al., 2005). In addition to
differences in temperature in summer breeding areas,
western overwintering sites in California also tend to
have slightly higher mean temperatures but lower diur-
nal fluctuations and lesser temperature extremes than
eastern overwintering sites in Mexico (Brower et al.,
2009; Brower, Williams, Fink, Zubieta, & Ramirez, 2008;
Leong, 1990).

Future studies would benefit from repeating earlier
studies on thermal performance using both eastern and
western monarchs. For example, the often-cited esti-
mates of developmental degree days for monarch larvae
come from a genetically divergent population in
Australia (Zalucki, 1982) and could be repeated using
side-by-side rearing of eastern and western monarchs
under conditions featuring natural insolation (Rawlins
& Lederhouse, 1981). Likewise, it would be useful to
identify genes that may be involved in thermal toler-
ance in monarchs, since these could potentially differ
in frequency or level of expression between eastern and
western monarchs. Genes involved in thermal tolerance
may also be targets of natural selection in a warming
climate (Somero, 2010).

2.3 | Interactions with natural enemies

Eastern and western monarchs likely interact with dispa-
rate assemblages of natural enemies. In eastern North
America, various studies have reported on the effects of
predation and parasitism by Tachinid flies (Oberhauser,
2012), fire ants (Calvert, 2004), ladybugs (Koch,
Hutchison, Venette, & Heimpel, 2003), and other arthro-
pods (Hermann, Blackledge, Haan, Myers, & Landis,
2019; Oberhauser et al., 2015; Prysby, 2004; Rayor, 2004).
Few studies have focused on natural enemies in western
monarchs, and this would be a useful avenue for future
research.

The best-studied interaction between monarchs and
their natural enemies is with the protozoan parasite
Ophryocystis elektroschirrha (OE). Common garden cross-
infection experiments with OE showed no differences in
tolerance or resistance between eastern and western
monarchs (de Roode, Yates, & Altizer, 2008), despite evi-
dence for (a) higher natural prevalence of OE in western
compared to eastern North America (Altizer & de Roode,
2015); (b) genetic variation among monarch genotypes for
tolerance and resistance (de Roode & Altizer, 2010; Lefèvre,
Williams, & de Roode, 2011); (c) variation among OE
strains in virulence (de Roode et al., 2008; de Roode &
Altizer, 2010); (d) evidence that monarch populations in
Hawaii and South Florida do show evidence for divergence
in OE tolerance and resistance (Sternberg, Li, Wang,

Gowler, & de Roode, 2013). Together, these results suggest
that differences in virulence among OE genotypes are capa-
ble of selecting for genetically-based differences in tolerance
and resistance in monarch populations, though such differ-
ences are not observed in eastern versus western monarchs.

A potentially interesting follow-up study would be
to compare the virulence estimates of eastern and west-
ern OE genotypes from de Roode et al. (2008) with
present-day estimates. A prediction might be that OE
virulence has increased in western North America in
the last decade, coincident with increases in the preva-
lence of year-round breeding in California (Crone &
Schultz, 2021; Satterfield, Villablanca, Maerz, &
Altizer, 2016).

2.4 | Migration-associated traits
and behaviors

The most conspicuous difference between eastern and
western monarchs is the scale of their seasonal migra-
tion. Mark-recapture studies with eastern monarchs
show that they generally fly between 1,500–3,000 km
during their fall migration to Mexico, with some indi-
viduals covering more than 4,000 km (Flockhart et al.,
2017). By contrast, tagging studies with western
monarchs have found maximum flight distances of
�1,400 km (James & Kappen, 2021), with typical flight
distances of <800 km (James et al., 2018). Studies using
stable isotope data corroborate these differences in
migration distance between eastern and western
monarchs (Flockhart, Brower, et al., 2017; Hobson,
Wassenaar, & Taylor, 1999; Wassenaar & Hobson,
1998; Yang, Ostrovsky, Rogers, & Welker, 2016). In
particular, the eastern overwintering monarchs in Flo-
ckhart, Brower, et al. (2017) had an average migration
distance (based on the distance to centroid metric) of
2,995 km; Yang et al. (2016) do not provide migration
distance estimates, though a substantial proportion of
western overwintering monarchs appear to originate in
coastal California, suggesting that average western
migration distances may be closer to �500 km. This
would represent an approximately six-fold difference in
average migration distance between eastern and west-
ern monarchs.

Migration acts as a strong selective filter for migra-
tory monarchs, favoring individuals with larger and
more elongated forewings (Altizer & Davis, 2010; Flo-
ckhart et al., 2017; Yang et al., 2016). Researchers have
generally found that western monarchs have slightly
smaller and less elongated forewings than eastern
monarchs, potentially as a result of divergent selection
due to differences in migration distance (Altizer &

FREEDMAN ET AL. 5 of 13



Davis, 2010; Freedman & Dingle, 2018; Li, Pierce, & de
Roode, 2016). Studies that have directly compared east-
ern and western monarchs—both wild-caught and
common-garden reared—are shown in Table S2. East-
ern monarchs have consistently larger forewings than
western monarchs across all studies and comparisons
(Table S2). However, these differences are relatively
modest in comparisons using wild caught individuals
(eastern monarchs are between 1–8% larger), and even
less pronounced for common-garden reared monarchs
(�1%). Future studies could focus on accounting for the
sources of environmental variation (e.g., rearing temper-
ature, host plant identity, photoperiod conditions) in

migration-associated traits that could potentially explain
phenotypic differences between eastern and western
monarchs. Environmental contributions to migration-
associated traits may be particularly important for
understanding differences observed between wild-
caught eastern and western monarchs, especially in
light of studies showing that larval host plant species
can influence adult monarch size (Decker, Soule, de
Roode, & Hunter, 2019; Freedman, Jason, et al., 2020;
Pocius et al., 2017). Environmental differences were
also suggested as the reason for the significantly higher
flight endurance of eastern compared to western
monarchs (Talla et al., 2020).

TABLE 1 Summary of studies that have directly compared eastern and western monarchs to compare patterns of genetic differentiation

Study
Number and location of
monarchs sampled

Type of sequencing/number
of loci analyzed Brief summary of findings

Brower and Boyce (1991) 28 total:
• 12 eastern (Sierra Chincua)
• 12 western (Natural

Bridges SP)
• 1 Tobago
• 3 Trinidad

Allozymes/13 fragments used in
analysis

No differentiation between any
samples. Based on subsequent
studies, lack of differentiation
between North American and
Caribbean samples likely an
artifact of low statistical power.

Shephard, Hughes, and
Zalucki (2002)

1,194 total:
• 152 eastern (100 Michoacan,

52 Kalamazoo)
• 160 western (50 San Diego, 55

Santa Barbara, 55 San Luis
Obispo)

• 855 Australia
• 48 Hawaii

Allozymes/7 fragments used in
analysis

No differentiation between
eastern and western samples,
with the possible exception of
San Diego. Substantial gene
flow inferred between Santa
Barbara and Kalamazoo
samples.

Lyons et al. (2012) 262 total:
• 100 eastern (St. Marks, FL)
• 100 western (Pismo Beach,

Santa Barbara)
• 46 Hawaii
• 16 New Zealand

Microsatellites/17 sequenced, 11
used in analysis

No differentiation between
eastern and western samples.
Hawaii and New Zealand
clearly distinct from North
America. Note that Pierce
et al. (2014) included the same
North American monarchs and
found the same results.

Zhan et al. (2014) 92 total:
• 25 eastern (MA, NJ, FL,

TX, MX)
• 3 western (CA)
• Various other locations in

Central America, South
America, Pacific, Atlantic

Whole genome resequencing/
�10 million SNPs with average
genome-wide coverage >95%

No differentiation between
eastern and western samples.
Substantial differentiation
between North America and all
other locations, including
South Florida.

Talla et al. (2020) 43 total:
• 14 eastern (MA, NJ, FL,

TX, MX)
• 29 western (Big Sur, Oceano,

Carpinteria)

Whole genome resequencing/
�20 million SNPs with average
genome-wide coverage >95%

No differentiation between
eastern and western samples.
Overall genome-wide
FST � 0.001, with no fixed
differences between samples.
*Note that eastern samples are
the same as those used in Zhan
et al. (2014).
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3 | GENETIC STUDIES OF
DIFFERENTIATION BETWEEN
EASTERN AND WESTERN
MONARCHS

3.1 | Population genetics

Researchers have been investigating the potential for
genetic differentiation between eastern and western
monarchs since at least 1991. As early as 1995, researchers
cautioned against human-assisted movement of eastern
and western monarchs across the continental divide, in
part because of the perceived risk of gene flow potentially
disrupting patterns of local adaptation (Brower et al.,
1995). The current consensus—developed over the last
9 years and with the advent of novel sequencing
methods—is that there is a lack of genetic differentiation
between eastern and western monarchs.

Recent research strongly suggests that eastern and
western monarchs form a genetically indistinguishable
population that spans most of their North American
range. The exception to this pattern is in South Florida,
where monarchs are predominantly non-migratory
(Brower, 1961; Zhan et al., 2014). This result is summa-
rized in Table 1 (also reviewed in Pierce, Altizer,
Chamerlain, Kronforst, & de Roode, 2015) and is robust
to the kind and number of markers analyzed
(i.e., microsatellites versus single nucleotide polymor-
phisms from whole genome sequencing) and consistent
across studies. The most comprehensive study on the
topic is from Talla et al. (2020), who used whole genome
resequencing for 14 eastern and 29 western monarchs
and found no evidence for any genetic differentiation,
including no fixed differences between east and west and
no windows of elevated FST in genome-wide compari-
sons. While these studies are consistent with genetic pan-
mixia between eastern and western monarchs, an
alternative interpretation is recent divergence but with
ongoing low levels of gene flow.

Existing studies have included comparisons from a
mix of breeding, migrating and overwintering monarchs.
Future research could directly compare overwintering
eastern and western monarchs only, since this should
provide the best opportunity for detecting allele fre-
quency shifts associated with selection imposed by long-
distance migration. Seasonally variable selection pres-
sures can drive oscillating allele frequency changes in
natural populations (Behrman et al., 2018; Bergland,
Behrman, O'Brien, Schmidt, & Petrov, 2014). If the differ-
ences in fall migration distance between eastern and
western monarchs result in differences in selection inten-
sity, this could potentially lead to a transient signature of

divergent selection between overwintering populations.
By contrast, butterflies sequenced during summer breed-
ing are the offspring of adults that randomly mate at
overwintering sites and during spring return migration
(Eanes & Koehn, 1978), which would reduce any signal
of divergent selection associated with fall migration
distance.

While current evidence suggests little genetic differ-
entiation between eastern and western monarchs, studies
that include non-migratory monarchs from South Flor-
ida, the Caribbean, Central and South America, the
Atlantic, and the Pacific do all find clear evidence for
genetic differentiation in these peripheral populations
(Lyons et al., 2012, Pierce et al., 2014, Zhan et al., 2014,
Hemstrom et al., in review). This pattern suggests that
existing methods are capable of detecting genetic differ-
entiation among more divergent monarch lineages,
including for monarchs in South Florida, which are
genetically distinct from eastern monarchs despite a large
influx of eastern migrants each year (Knight & Brower,
2009, Vander Zanden et al., 2018). The genetic differences
between North American and non-North American
monarchs are also generally accompanied by more pro-
nounced phenotypic differences than those observed
between eastern and western monarchs (Freedman, Din-
gle, Strauss, & Ramírez, 2020; Li et al., 2016). However, it
is possible that expanded sampling involving hundreds or
thousands of monarchs sampled across a large number of
markers could reveal subtle patterns of genetic differenti-
ation between eastern and western monarchs that pre-
sent studies have not detected.

3.2 | Migration rates between east
and west

Given their divergent overwintering destinations, it may
at first be difficult to see how eastern and western
monarchs could form a single genetic population. Mark-
recapture studies (Billings, 2019; Morris, Kline, & Morris,
2015), behavioral observations (Brower & Pyle, 2004;
Pyle, 1999) and museum records (Dingle et al., 2005) sug-
gest that at least some western monarchs travel to Mexi-
can overwintering sites in the autumn. Billings (2019)
compiled results from 3 years of mark-recapture studies
conducted in Arizona. Of the 3,194 tagged and released
monarchs, 32 were recovered at California overwintering
sites and 12 were recovered at Mexican overwintering
sites. Likewise, there is speculation that Mexican over-
wintering monarchs might recolonize western North
America in the spring (Brower & Pyle, 2004). When mon-
arch populations in the east and west were larger,
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occasional movement across the Rocky Mountains was
recorded (Pyle, pers. comm.). None of the more than
2 million monarchs tagged east of the Rockies between
August–November have ever been recovered in the west
(O. Taylor, unpublished data); however, this may reflect
(a) low general recovery rates (�1%) for tagged monarchs
(Taylor et al., 2019); (b) low rates of movement from
Mexican overwintering sites to western North America;
(c) limited human population density in areas where
these monarchs might be recovered (i.e., southern Ari-
zona and New Mexico). It is also important to note that
even small numbers of migrants between east and west—
the classic rule of thumb suggests one migrant per
generation (but see Mills & Allendorf, 1996)—would be
sufficient to prevent genetic differentiation from develop-
ing in a large, outcrossing species like monarchs.

4 | ADAPTIVE CAPACITY
IN MONARCHS

4.1 | Adaptive capacity in North
American monarchs

The concept of adaptive capacity refers broadly to the
ability of populations or species to adapt to future envi-
ronmental change. North American monarchs possess
high levels of genetic diversity, as indicated by high esti-
mates of effective population size (Ne ≈ 2 × 106) (Zhan
et al., 2014). This high level of standing diversity should
be associated with robust evolutionary potential. Eastern
and western monarchs appear to harbor comparable
levels of genetic diversity, as seen in measures of allelic
richness using microsatellites (Pierce et al., 2014), the
ratio of heterozygote to homozygote genotypes (Zhan
et al., 2014), and various other measures (Talla et al.,
2020, Hemstrom et al. in review). The lack of fixed
genetic differences between eastern and western North
America suggests that there are no strongly selected
genetic variants that contribute to adaptation specifically
to eastern or western North American environments
(Talla et al., 2020). Experiments that reciprocally translo-
cate eastern and western monarchs and assess their abil-
ity to exhibit appropriate migration-associated behaviors
(e.g., directional orientation) would help to establish
whether eastern and western monarchs are actually
interchangeable. A number of previous studies have
involved transplanting eastern monarchs westward
(Mouritsen et al., 2013; Urquhart & Urquhart, 1977),
though the inferences that can be drawn from these stud-
ies may be limited (see Brower et al., 1995; Brower &
Pyle, 2004; Oberhauser et al., 2013).

4.2 | Adaptive capacity in non-migratory
monarch populations around the world

Many non-migratory, year-round breeding populations of
monarchs have become established in locations around
the world over recent evolutionary history (Pierce et al.,
2014; Vane-Wright, 1993; Zalucki & Clarke, 2004; Zhan
et al., 2014). These sites include multiple locations that
fall under the purview of USFWS: American Samoa,
Guam, the Northern Mariana Islands, Hawaii, Puerto
Rico, and the U.S. Virgin Islands. Year-round breeding
populations are also present in South Florida, coastal
Georgia and the Carolinas, the Gulf Coast states, and
southern California. Whether these recently-derived non-
migratory populations can act as meaningful reservoirs of
genetic diversity and adaptive capacity remains an open
question (Reppert & de Roode, 2018).

A recent review by Nail et al. (2019) suggested that
the monarch's global distribution provides the species
with adaptive capacity. While this may be true in a demo-
graphic sense—having widely distributed populations
around the world reduces the risk of a stochastic extinc-
tion event for the species as a whole—recent research
suggests that non-migratory populations may not provide
adaptive capacity in an evolutionary sense. Derived mon-
arch populations have reduced allelic richness (Pierce
et al., 2014) and effective population sizes (Zhan et al.,
2014, Hemstrom et al. in review), suggesting a loss of
standing genetic diversity associated with founding bot-
tlenecks in these populations. The reduction in genetic
diversity in these peripheral populations could conceiv-
ably compromise their ability to adapt to future environ-
mental change.

A number of recent studies have addressed the ques-
tion of adaptive capacity in non-migratory monarchs.
Freedman et al. (2018) found that non-migratory mon-
arch populations from Queensland retain migration-
associated traits such as induction of reproductive arrest,
suggesting that the loss of migration may be due to a lack
of relevant seasonal cues, rather than an inability to
sense and/or integrate those cues. However, two recent
studies (Tenger-Trolander & Kronforst, 2020; Tenger-
Trolander, Lu, Noyes, & Kronforst, 2019) found that
commercially-reared monarchs whose breeding history
precludes seasonal migration can lose their ability to con-
sistently directionally orient, a critical part of their ability
to complete migration. These studies suggest that some
aspects of monarch migration are phenotypically plastic
and may be shielded from selection and maintained in
non-migratory populations, while other migration-
associated traits might be selected against and lost.
Another recent study showed that non-migratory
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monarchs from Costa Rica have less narrowly tuned
peripheral neurons associated with the ability to detect
green light, which is thought to be an important celestial
navigational cue in temperate regions (Nguyen, Beetz,
Merlin, & El Jundi, 2021). Finally, non-migratory mon-
arch populations tend to have high prevalence and abun-
dance of infection with OE (Altizer, Oberhauser, &
Brower, 2000; Bartel, Oberhauser, De Roode, & Altizer,
2011; Satterfield, Maerz, & Altizer, 2015). Despite having
greater tolerance and resistance to OE, non-migratory
populations' parasite loads may render them less capable
of completing long-distance flights (Bradley & Altizer,
2005). Together, these results call into question the
notion that derived non-migratory monarch populations
are adequate stand-ins for their migratory North Ameri-
can ancestors if the goal is to conserve functional genetic
diversity.

5 | WHAT LESSONS CAN BE
LEARNED FROM DECLINES IN
WESTERN MONARCHS?

One year after approximately 300,000 monarchs were
recorded at overwintering sites in California in 2016,
Schultz et al. (2017) proposed a quasi-extinction thresh-
old of approximately 30,000 monarchs and suggested a
72% risk of extinction within the next 20 years. In 2018,
western overwintering numbers fell below the quasi-
extinction threshold for the first time. By 2020, fewer than
2,000 monarchs were recorded from California over-
wintering sites. The reasons for this extremely rapid decline
are not entirely clear and are hard to disentangle from time
series data (see Crone et al., 2019), though climate change—
and especially autumnal warming—has been implicated
broadly in the decline of western North American butterflies
(Forister et al., 2021). The lack of recovery in western
monarchs between 2018–2020 is also consistent with possi-
ble Allee effects. The rapid loss of western monarchs high-
lights that adoption of mitigation measures to stem declines
cannot be reactive; ongoing efforts to restore overwintering
sites in California, while well-intentioned, would have been
more useful if implemented preemptively.

Despite the looming extirpation of migratory monarchs
from the western U.S., a potentially growing population of
year-round resident monarchs has established in coastal
California (Crone & Schultz, 2021; Satterfield et al., 2016),
particularly in urban areas with cultivated, non-native milk-
weed (especially A. curassavica). While likely several orders
of magnitude smaller than historical migratory populations,
these year-round breeding populations may prevent a com-
plete extirpation of monarchs from western North America.
It is currently unclear whether year-round breeding

populations in California as well as the U.S. Gulf Coast and
Florida may act as demographic sources or sinks for migra-
tory monarchs. There is some evidence of monarchs inter-
rupting their migration and joining year-round breeding
populations in both eastern (Satterfield et al., 2018) and
western (James & Kappen, 2021) North America. The dis-
tinction between outright extinction versus loss of migration
is important and has been noted previously: indeed, the
2014 petition to list monarchs under the ESA highlights
that while species-level extinction is unlikely, the phenome-
non of long-distance migration is at risk (also see Wells,
Pyle, & Collins, 1983, Brower & Malcolm, 1991). From an
evolutionary perspective, migration is likely a derived con-
dition within the Danaus clade containing monarchs (Zhan
et al., 2014). Even though migration is not uncommon
among other Danaine butterflies (Ackery & Vane-Wright,
1984), monarchs are unique in the scale and scope of their
migration. Future research into partial migration—whereby
animal populations are composed of a mixture of resident
and migratory individuals (Chapman, Brönmark, Nilsson, &
Hansson, 2011)—may provide a glimpse into an uncertain
future for migratory monarch butterflies.

6 | CONCLUSIONS

Eastern and western monarchs are geographically and
demographically distinct, though there is only modest evi-
dence for phenotypic differentiation and no current evi-
dence for genetic differentiation between them. Policy-
makers who are considering how to contextualize the
decline of western monarchs will need to decide whether
to adopt a parsimonious or precautionary approach in
their decision-making. A parsimonious approach based
on presently available genetic data would suggest that
western monarchs do not constitute a distinct population:
at present, there are no diagnostic criteria that could reli-
ably be used to distinguish an eastern from a western
monarch. A precautionary approach would recognize the
potential for western monarchs to provide adaptive capac-
ity and would involve treating the two populations as dis-
tinct based on their phenotypic and demographic
differences. The rapid decline of western migrants high-
lights the need for conservation practitioners to consider
sudden state changes and to decide whether conservation
efforts should focus exclusively on migratory monarchs.
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